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A derivation is presented of expressions which relate the differential operators of the the- 
ory of elasticity by virtue of their potential character. The corresponding relations for non- 
linear systems with a finite number of degrees of freedom were apparently first obtained by 
A.R. Rzhanitsyn in 1952. He also indicated at that time the possibility of generalizing to 
the case of continuous systems. The fact that a complete system of potentials of the theory 
of elasticity and plasticity exists (established by Gol’denblat [l] ) serves as the starting 
point for this paper. 

1. For conservative, discrete systems with p degrees of freedom, a proof of the exis- 
tence of functions Ur with the following properties and a method for constructing them are 
given in [l] : 

-aU,/aTi = Li (T,,*.. T,, VI+1 ,..m Vp) = Vi (i = 1, 2,...1) 

aU,/aV,,, = L, (T, ,... TI, VI+1 ,... VP) = T, (m = 1 + 1, 1 + 2,... p) (1.1) 

Here the T, are generalized internal forces; V, are the generalized displacements; and Lk 
are the algebraic operators which form the system of equations of the problem under con- 
sideration. In addition to the unknown quantities T and V , parameters occur in these 
equations which correspond to the geometric and e astic c i f: aracteristics of the problem and 
also to the generalized external forces. 

The set of all possible functions II, possessing the properties indicated forms the com- 
plete system of potentials of the elastic system. 

2. In the case of a continuous mechanical system a potential Ur becomes a functional 
which depends not only on the generalized forces and displacements, but also on their 
derivatives with respect to the coordinates. In order to explain the essentials of the matter 
it is sufficient to consider the following very simple functional in a two-dimensional region 
Q: 

U = L(T,V)dQ-= 
s s F (T, V, Tx, 5, VX, VJ dx dy C 

aT 
Tx=x,. . . 

) 
(2.1) 

CI n 
Here T E M, V E N, where M and N are the sets of those functions in the Hilbert space 

L 2 (n) which in the closed region n have continuous first derivatives and square-sammable 
second derivatives and also satisfy the boundary conditions on the curve S bounding the 
region n. The set of paira (T, V), which we shall regard as elements of the direct product 
of the space I, (Q) with itself, forms the region D (L,) of definition of the operator I, and 
the functional 6. The function F is assumed to be continuous along with its first and 
second derivatives with respect to any of its argumenta. 

Let us compute the partial variations of the functional U corresponding to (1.1). for ar- 
bitrary fixed T, V E D \I) 

b,U = 
6! 

-jjgi td8 = 
s 
a 

(Fr,.t + F=,tx + F+,) dx dy = 

- 
% 

(F,xdy - F.Qx) t + 
% 

(F, - & FTx - & FT,) t dx dy = jbt dx dy (2*2) 

6-A 
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v dQ = c 
*a 

(FVv + Pvxvr + Fy!,vt,) dx dy = 

where the partial derivatives 8 L /a T and d L/ d V are linear operators on t E M and u E N 
at the point ( Z’, V). 

AS a result of the Lagrange transformation each of the variations acquires the form of 
the sum of s Due integral and an integral over the region. The integrands of the integrals 
over the region are the left sides of the differential equations of the problem at hand. The 
natural boundary conditions follow from the condition that the line integrals go to zero. In 
conformity with Eqs. (1.1), the system of differential equations of the problem may be rep- 
resented in the form (2.4) 

L, (T, v) = - jFT - & FTz - 4 FTv) = V“, L2 (T, v) = k’,- - &Fr, -- &Fvi,= 7’0 

3. Let us multiply the left-hand side of the first of Eqs. (2.4) by t and integrate over the 
region fz . Then, taking account of the boondary conditions, we carry out the inverse of the 
Lagrange transformation of Eq. (2.2) and write out the integrand obtained. Denoting the 
operation which has been performed by an asterisk on the corresponding operator, we have, 
obviously 

Lr*t = - (F,t + FT,tx + FT,trr) ci - g t 
(3.1) 

We now perform the analogous operation on the second of Eqs. (2.4) (multiplication by v 
and subsequent transformation) 

C?L 
Lr*v = F,,v + Fv,vx + F,+ = m v (3.2) 

In accordance with the assumption adopted above concerning the function F in (2.1) for 
all ( T 
and 121 

V ) ,E D (L), the operator L has a continuous second differential on the set ( T, V) 

(3.3) 

Taking account of this equation, we obtain from (3.1) and (3.2) 

aL1* al;* 
rtv = -yjyi- vt (3.4) 

It is now easy, by analogy based on (l.l), to write down the relatious of similar type for 
a continuous system with 1 unknown generalized forces T, and (p - t ) 
ments V It differs from the preceding only in that: (1) an element of ( t 

enersiixed &place- 

VP> of tr:’ g’ 
t,... T#, V, + l,m.. 

e re 1011 of definition of the functional Ul is an element of the product ofp RiIbert 
spaces; (2) the functions T,,... VP must have in the region n derivatives of whatever order 
is required by the problem under consideration; and (3) the region !J, need not necessarily 
be two-dimensional. 

Considering, as before, that the operator in the integrand of the functional U, is twice 
continuously differentiable, we obtain 
aLi* at.* 
r t*tj = --2?- t t 

aL * 

-.-Z!!L 
aIJ * 

3 aTi i a’ dFl& 
-----1L, 2: Em27n - av, n m 9 

itL,* a%l* 
aQm tium - - 3~. Vmti (3.51 

1 

(i, i -I= 1,2, . . . 1; m, n = 1 + 1, 1 -+ 2, . . p) 
These are the relations which have been sought between operators for any conservative 

mechanical system. They can be used to verify the equations obtained from consideration 
of the statical, geometric and physical aspects of a problem, 

For discrete systems the differential operators become algebraic ones and instead of 
(3.5) we have 

aL, a&. 
IL_ aL, 8Ln aL. aL 

BTj= aT, , av, =m”t &--e aT. (3.6) 
m 1 

If the discrete system is lineir, Eqs. (3.6), as can easily be seen become the well-known 
relations between the coefficients of the flexibility method, stiff&s method and mixed 



526 E.N. Koznetsov 

method of structural mechanics 
6ij = 6jit ‘** = rsml ‘im = - 6 mi (3.7) 

Thus, E 
Therefore, 3.5) can also be con sidered as reciprocal relations. P 

a. (3.7) are of the same nature as the relations (3.5) which generalize them. 

4. As an example we shall apply the relations which have been found to von K&m&t’s 
equations for large deflections of a plate 

1 
L1 (0, W) = -+ V4@ + w,,w,, - mm2 = 0 

Lz (a), W) = PV4W - Q)xrwt,zJ - oD1,,wxx + 2%/w, = q (4.1) 

Multiplying the first equation by cp and the second by w, we obtain after two integrations 
by parts, having due regard to the boundary conditions, 

1 
Ll*cp = -gjpKpQ) i f w,*~v~, + wq;‘p,,) + W,lt’,cpq 

Lz*w = a&&/w, + cD1,,,w2w, - @)ry (Wxwl, + WpJ -t PV4Ww 

(4.2) 

(4.31 

In the calculations of (4.3) the conditions of equilibrium in the tangential directions 
were taken into account. One more differentiation of the expressions which have been found 
gives 

As is apparent from this example, the use of the reciprocal relations (3.5) does not, in 
general, assume knowledge of the corresponding potentials. 

As is well known, in using the variational methods of Ritz and of Bubnov and Galerkin, 
a continuous system becomes a system with a finite number of degrees of freedom in the 
computational scheme. Therefore, the algebraic equations which are obtained mast satisfy 
Eqs. (3.6). In the application of the Kantorovich and Vlasov methods, the differential equa- 
tions which are obtained.after lowering the number of independent variables must satisfy 
Eqs. (3.51, as must the original equations. 
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